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This review focuses on developments in the Þeld of bioprinting for musculoskeletal 
tissue engineering, along with discussion on the various approaches for bone, 
cartilage and connective tissue fabrication. All approaches (cell-laden, cell-free 
and a combination of both) aim to obtain complex, living tissues able to develop 
and mature, using the same fundamental technology. To date, co-printing of cell-
laden and cell-free materials has been revealed to be the most promising approach 
for musculoskeletal applications because materials with good bioactivity and good 
mechanical strength can be combined within the same constructs. Bioprinting for 
musculoskeletal applications is a developing Þeld, and detailed discussion on the 
current challenges and future perspectives is also presented in this review.
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Every 30 s, a patient dies from a condition 
that could be treated with organ replace-
ment [1] . Organ transplantation has potential 
to be an efÞcient solution but is restricted 
due limited donor availability. Furthermore, 
organ transplantation requires complex sur-
gical interventions and can lead to complica-
tions such as organ dysfunction or rejection. 
Successful translation of tissue engineering 
and regenerative medicine research is key 
to alleviating the challenges in organ trans-
plantation, but can also be applied to dis-
ease modeling and drug discovery (Figure 1) . 
More speciÞcally, improved understanding 
of the biological architecture and natural 
repair processes in adult tissues could aid the 
challenging fabrication of de novo organs, for 
these applications. For cells to self-assemble 
into tissues, they need an environment in 
which cells can remain viable and are able to 
adhere and migrate. The most important fac-
tors to consider are growth factors, nutrients, 
adhesion molecules, cells, materials and the 

technologies applied to enhance the fabrica-
tion process [2] . This review focuses on devel-
opments in bioprinting for musculoskeletal 
tissue engineering, and provides discussion 
on the various approaches for bone, cartilage 
and connective tissue fabrication, along with 
current challenges and future perspectives.

Bioprinting & its role in 
musculoskeletal tissue fabrication
The musculoskeletal system (MSK) provides 
structural support for the body and comprises 
of vital tissue components such as bone, carti-
lage, muscles, tendons and ligaments. When 
these tissues are damaged through injury, 
their repair remains challenging due to their 
limited regenerative potential.

Every year, over two million bone grafts 
are performed worldwide, due to diseases, 
sarcomas or trauma injuries [3] . In the USA, 
musculoskeletal injuries reach 32 million per 
year, of which, 45% are represented by ten-
don, ligament and joint capsular i njuries [4] . 
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Figure 3.  3D bioprinting for musculoskeletal applications. Percentage of various materials used in (A) cell-free 
and (B) cell-laden printing for musculoskeletal applications. The data are based on articles published in the 
last 15 years using the search terms ‘3D printing’, ‘bioprinting’ and ‘bioink’ associated with ‘bone’, ‘cartilage’, 
‘osteochondral’, ‘muscle’, ‘tendon’ and ‘ligament’.
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proliferation and osteochondral differentiation with 
both cell-free and cell-laden printing approaches. 
However, natural materials were the most com-
mon materials used for cell-laden printing (70% of 
total reported in literature, Figure 3B) for musculo-
skeletal applications. This is predominantly because 
of their capacity to form gels that can support cell 
e ncapsulation and survival during the 3D printing 
process.

Due to their poor mechanical properties, some of 
these natural biomaterials have been co-printed with 
other synthetic polymers for musculoskeletal applica-
tions. This can be realized by using multi-tool printing, 
which requires special modifications to printers such 
as incorporation of additional print heads or extruders. 
Daly et al. used multi-tool printing to produce a mechan-
ically reinforced cartilaginous template mimicking the 
geometry of a vertebral disk [26]. This is an exciting study 
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Figure 4. Structural properties of PCL-hydroxyapatite composites strengthened with carbon nanotubes for bone 
repair. (A) Technical drawing, (B) 3D simulation and (C) printed 3D scaffold with square pores.  
Reproduced with permission from [15].

Figure 5. Bioprinting of vertebrae-shaped bioinks with enhanced mechanical properties for bone regeneration. (A) Multi-tool 3D 
printing was applied to produce a composite vertebrae structure by depositing PCL filaments followed by an MSC-laden bioink (RGD-
alginate). (B) MicroCT analysis to illustrate the distribution of the bioink and PCL. (C) Live/dead images of MSCs within the bioprinted 
vertebrae.  
MSC: Mesenchymal stem cell; PCL: Polycaprolactone; RGD: Arginylglycylaspartic acid. 
Reproduced with permission from [26]. 

 2. PCL deposition 3. Bioink/MSC deposition1. Vertebral body
STL

4. Composite vertebrae
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showing the potential to mature bioprinted constructs 
in vivo. In this approach developmental precursors to 
an adult organ were bioprinted and the engineered con-
struct functioned as a template for subsequent organo-
genesis in vivo. This was achieved by printing a polycap-
rolactone (PCL) template, f ollowed by the deposition of 

a arginylglycylaspartic acid (RGD)-alginate hydrogel 
laden with adult stem cells, as shown in Figure 5. When 
implanted into a mouse model, the resultant bioprinted 
construct supported the development of vascularized 
bone containing trabecular-like endochondral bone with 
a s upporting marrow structure.
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In another example using multi-tool printing, the 
vascularized bone was engineered when polylactic acid 
(PLA) was deposited with fused deposition modelling 
(FDM) printing technology, while gelatine methac-
ryloyl (GelMA) containing BMP and VEGF was co-
printed using stereolithography (SLA) [34]. This study 
demonstrated that the dual 3D printed constructs pro-
vided a hierarchically biomimetic bone-like structure, 
with multiphasic characteristics and potential for vas-
cularized bone regeneration, as shown in Figure 6. This 
is a noteworthy approach to produce complex tissue 
structures in the lab. However, it is important to strin-
gently assess the functionality of this vascularized bone 
and make quantitative comparisons with native tissues.

In addition to this work, interesting results have 
been obtained using synthetic materials. Polyethylene 
glycol dimethyl acrylate was successfully inkjet printed 
with human chondrocytes for the repair of small osteo-
chondral defects [24]. In another study, bone and car-
tilage tissues were fabricated through inkjet printing 
of human mesenchymal stem cells and simultaneous 
deposition and photo-crosslinking of polyethylene gly-
col dimethyl acrylate [35]. Others have achieved mini-
mal print-head clogging by printing acrylate peptides 
and polyethylene glycol hydrogels with human mesen-
chymal stem cells to promote robust bone and cartilage 
formation [36]. Porous bioactive glass/alginate compos-
ite scaffolds have also been fabricated for bone tissue 
engineering using 3D printing [13].

As a prospective treatment for cartilage lesions, 
recent study reported use of 3D bioprinting approach 
to form cartilage mimetics using a nanofibrillated cel-
lulose and alginate-based composite bioink seeded 
with human-derived induced pluripotent stem cells 
and human chondrocytes [30]. The bioprinted con-
structs could maintain pluripotency initially, and after 
5 weeks, hyaline-like cartilaginous tissue with collagen 
type II expression, lacking tumorigenic OCT4 expres-
sion was observed. Furthermore, a significant increase 
in cell number within the cartilaginous tissue was 
detected. This study combines 3D printing and stem 
cell technology to generate viable tissues for clinical 
applications.

While the majority of studies focus on bone and car-
tilage regeneration, recent work has shown progress in 
the bioprinting of other musculoskeletal tissues such 
as muscles and tendons. An integrated tissue-organ 
printer was used for the fabrication of skeletal muscle 
structures. The approach was based on the printing of 
well-defined PCL patterns for directional alignment of 
the muscle cells, as shown in Figure 7. At the same time, 
cells were deposited using a mixture of hydrogels (gela-
tin, hyaluronic acid and fibrinogen), which were loaded 
with mouse myoblasts cells. Results showed good cell 
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Figure 7. Bioprinting of skeletal muscle and implantation in vivo . (A) and (B) scaffold design; (C) scaffold 
fabrication; cell alignment with PCL (D) and without PCL (E); (F) live/dead assay: green cells are alive and 
red cells are dead; (G) immunofluorescent staining for myosin heavy chain of the 3D printed muscle after 7D 
differentiation. The encapsulated myoblasts aligned along the longitudinal direction of the fiber structure; (H) 
schematic of the ectopic implanted scaffold in vivo; (I) implanted scaffold next to the CPN and (J) immunostaining 
for desmin. 
CPN: Common peroneal nerve; PCL: Polycaprolactone. 
Reproduced with permission from [31] © Nature Publishing Group.
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viability, and alignment along the PCL pillars/patterns 
and muscle-like structures were observed after 7 days. 
When the constructs were implanted in vivo, they inte-
grated with the common peroneal nerve after 2 weeks 
and the muscle was seen to respond to electrical stim-
uli [31]. Even though bioprinting examples in this area 
are limited, this study provides good evidence that 3D 
printing can be used for the development of various 
fibrous tissues (muscle, tendon and ligament) where 
cellular alignment is a key r equirement [37].

While various materials have been used as bioinks 
for printing cell-free and cell-laden constructs, cells 
alone in the form of tissue spheroids have also been 

i nvestigated for 3D bioprinting. Printed cells have a 
fluid nature and over time, they fuse together to form 
more complex cell aggregates that can potentially lead 
to tissue formation [38]. In the literature, tissue spheroids 
have already been successfully used for cartilage tissue 
engineering [39–41]. However, successful production of 
constructs using tissue spheroids is still in its infancy 
and focus needs to be applied on utilizing 3D printing 
technologies to help with scale-up, r eproducibility and 
formation of more complex structures [42,43].

Breakdown of the materials used as bioinks for bone 
and cartilage bioprinting in the last 15 years show some 
interesting trends. The majority of all the cell-free 
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fabrication requirements for musculoskeletal bioinks. 
Most of these requirements are similar to soft tissue 
bioprinting; however, they become specific for mus-
culoskeletal applications when additional mechanical 
stiffness and rigidity is required to fabricate structur-
ally competent tissues.

In the body, cells are found in highly organized 
environments, which are rich in water, nutrients and 
growth factors [48]. The review paper by Murphy pro-
vides an excellent overview Due to their significant 
water content, hydrogels have been identified as a 
primary material for bioprinting. Additionally, their 
hydrophilic nature allows hydrogels to retain large vol-
umes of water without preventing a variety of cross-
linking methods to be applied during fabrication of 
3D networks [49]. In addition to this, hydrogels can 
be formulated to respond to various external stimuli 
such as temperature, electric or magnetic fields, light, 
pressure and sound vibrations before, during or after 
printing process [50]. Chemical factors including pH, 
solvent composition, ionic strength and molecular 
species also affect hydrogel properties. Therefore, a 
good understanding of these parameters on printabil-
ity, stability in both in vitro and in vivo environments 
becomes essential.

Materials for bioprinting must be biocompatible and 
mimic natural cellular or tissue environment [51,52]. 
Specifically, materials used for cell encapsulation must 
mimic the natural environment of cells and it has been 
demonstrated that hydrogels based on extracellular 
matrix components permit this [53,54].

In terms of fabrication, printing materials should 
exhibit good printability and sufficient mechanical 
properties for cellular support and maintenance of the 
3D structures [51]. For example, since highly viscous 
hydrogels are prone to clogging phenomena in the 
nozzles of extrusion-based printers, shear-thinning of 
some hydrogels, such as hyaluronic acid and peptide 
gels, can be advantageous [55,56]. However, it is impor-
tant to adapt these hydrogels so they are able to ‘self-
heal’ and maintain their printed structure once depos-
ited [57]. Gelation time, along with the capacity to 
respond to physiological shear, tensile and compressive 
stresses, are other key parameters in bioprinting, which 
determine whether a printed construct can maintain 
its structure in a physiological environment [58,59].

Hydrogels for bioprinting of musculoskeletal tissues 
can be classified as natural or synthetic depending on 
their origin [60,61] and the most common ones used in 
the literature are summarized in Table 3.

Most natural hydrogels are based on components 
of the mammalian extracellular matrix (ECM), even 
though polymers from alternative sources, such as 
algae, are gaining interest [71]. Natural hydrogels 

show significant bioactivity compared with synthetic 
materials due to the intrinsic presence of biomol-
ecules used for signaling, adhesion, biocompatibility 
and self-remodeling [2]. While bioactive components 
are important for cell growth and differentiation, the 
application of natural materials can lead to batch-to-
batch variability, immunogenic reactions and disease 
transmission [72]. Interestingly, it has been observed 
that natural polymers, such as hyaluronic acid, lam-
inin, fibronectin and collagen, are more susceptible to 
cell-driven biodegradation [73].

It is important to note that as well as individual com-
ponents of the ECM, decellularized ECM has similarly 
been successfully utilized as bioinks in the printing of 
tissue analogs [74,75]. Tissue decellularized ECM can 
be obtained using chemical, physical and biological 
treatments and provides an excellent representation of 
the natural ECM environment [76]. At the same time, 
decellularized ECM can lead to nonhomogeneous cell 
seeding and immune reactions, if cellular components 
are not fully removed [76]. Furthermore, decellulariza-
tion treatments can damage the natural ECM and 
show poor mechanical properties in the material.

Synthetic materials are advantageous in terms of 
reproducibility and ease of processing compared with 
natural polymers. These polymers can sometimes 
lead to immunogenic reactions after partial degrada-
tion, but this can be controlled and accelerated with 
the addition of matrix metalloproteinases, which show 
excellent biocompatibility [77,78]. Furthermore, syn-
thetic materials can be tailored to form complexes with 
ECM proteins by covalent crosslinking.

These covalently bound molecules can be adhesion 
proteins or growth factors that enhance cell response 
within the hydrogels [58].

Challenges in bioprinting of musculoskeletal 
tissues
In addition to the hardware used for bioprinting, mate-
rial availability and their selection are significant chal-
lenges and limitations for the success of bioprinting in 
musculoskeletal tissue fabrication. Materials/bioinks 
composed of naturally derived materials are limited in 
their application due to batch-to-batch variability and 
often lack the mechanical strength required to mimic 
the in vivo environment of native musculoskeletal tis-
sues [59]. In the literature, this issue is often resolved by 
combining the natural inks with stronger biocompat-
ible materials, such as PCL, PLA and PLGA [9,17], as 
described previously.

Furthermore, bioinks are presently limited by their 
printability and resolution. Materials are often required 
to be viscous in order to maintain the morphology of 
printed structures and improve mechanical strength, 
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but this can lead to blockages and unreliable material 
deposition. Importantly, this has adverse effects on the 
print quality and resolution, which can be detrimental 
to achieving the highly hierarchical structures in the 
tissues of the MSK.

Tuneable, synthetic bioinks can provide a wide 
range of desirable properties, including controlled 
mechanics, degradation and printability. However, the 
techniques required to synthesize and crosslink these 
materials can cause cytotoxicity and prevent the abil-
ity to incorporate cells during the print process. For 
example, the monomers and photo initiators in some 
printable materials are toxic, but following UV cross-
linking, the polymers formed are biocompatible and 
can support cell survival [79,80].

Further, printing of mechanically stable gela-
tin in the form of GelMA traditionally requires UV 
light during the print process and can damage cells. 
Recently, this challenge has been overcome by devel-
oping GelMA that can be crosslinked using visible 
light [81]. Crosslinking of natural bioinks can similarly 
be associated with cytotoxicity, but this can often be 
alleviated by using low crosslinker concentrations or 
replacing with nontoxic analogs. For example, calcium 
chloride is used for crosslinking alginate, whereas glu-
taraldehyde is used for crosslinking collagen, gelatin 
or chitosan. Calcium chloride is not toxic at low con-
centrations, while glutaraldehyde can be replaced with 
alternatives like genipin, during the crosslinking of 
collagen, gelatin and chitosan [82–84].

Hydrogels are the most utilized materials in bio-
printing, due to their high water content and parallels 
to native ECM. However, these biomaterials show poor 
mechanical properties, so compromises must be made 
when considering characteristics such as composition, 
printability and mechanical strength. In the bioprint-
ing of musculoskeletal tissues this has been overcome 
to an extent by incorporating multiple printing tech-
nologies at the same time. This approach permits 
deposition of materials with good mechanical proper-
ties and cell-laden bioinks, within a single e ngineered 
construct [21,26].

Furthermore, the fundamental layer-by-layer nature 
of most printing techniques leads to difficulties in 
producing complex and hollow structures. This can 
be resolved by incorporating sacrificial materials for 
structural support during the fabrication process but 
this also increases the technological complexity, cost 
and time of the printing. Once the resolution, repro-
ducibility, speed and customization of current printing 
technologies have been defined and optimized, bio-
printing can provide cost-effective and high-through-
put systems for drug screening and tissue replacement. 
Importantly, robust methods for construct maturation 

and long-term maintenance, as well as quality control 
measures for bioprinted tissues, need to be considered 
in parallel with the technological advances of printers. 
Regulatory concerns, such as the ethics of stem cells 
and the use of Class II medical devices are also key 
factors to contemplate, for the success of bioprinting 
approach. Furthermore, at present there are no specific 
3D bioprinting regulations defined by the Medicines 
and Healthcare Products Regulatory Agency in the 
UK or US FDA in the USA.

Future perspective
Printing of natural ECM-based materials embedded 
with cells provides significant advantages for tissue 
engineering, including biocompatibility, robust con-
trol of cell distribution and density within the scaf-
fold. Nevertheless, traditionally materials have been 
produced and seeded with cells afterward, and this 
can also be applied to printed constructs. In fact, this 
approach permits scaffolds with enhanced mechanical 
properties and resolution that natural materials often 
lack for musculoskeletal applications. Furthermore, co-
printing of cell-laden and cell-free materials has been 
revealed to be beneficial for musculoskeletal tissue 
engineering applications [12,21,26]. All these approaches 
(cell-laden, cell-free and a combination of both) aim 
to obtain a complex, living tissue able to develop and 
mature, using the same fundamental technology.

The bioprinting literature suggests that the defini-
tion of bioinks remains ambiguous. This is because 
various components such as cells, biomolecules, syn-
thetic materials either alone or in combination, are all 
defined as bioinks by different groups. Consensus on 
bio-ink definition is required. With the development 
of new bioinks in the future, nanobiofabrication of 
organs will become a reality and this will help to alle-
viate the increasing organ shortages worldwide. More 
specifically, technological advances in material sci-
ence and engineering will permit versatility, nanoscale 
resolution and controllable distributing of cells and 
biomaterials, for a range of biomedical applications, 
i ncluding musculoskeletal repair.

The literature shows that bioprinting of muscles, 
tendons and ligaments is still a challenge; however, 
promising progress has been made in bioprinting of 
bone and cartilage. Stiff materials have been combined 
with natural cell-laden hydrogels to form composite 
constructs that are mechanically stable with the ability 
to mimic the native ECM environment of osteochon-
dral tissues. Further, it has been demonstrated that 
these scaffolds can be combined with stem cells to per-
mit osteochondral development in vivo [26]. Progress 
has even been made in the bioprinting of vascularized 
bone [34]. Biosensors for bone formation [85], and pro-
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