3D Bioprinting allows for a variety of opportunities to improve our overall physical condition and health. In the article below, read how University of California San Diego 3D printed a variety of devices ranging from rocket engines, to robots, to structures inspired by the seahorse’s tail. Now, nanoengineers have added a new item to that list: a 3D printed biomimetic blood vessel network.

 

In the past decade, engineers at the University of California San Diego have 3D printed a variety of devices ranging from rocket engines, to robots, to structures inspired by the seahorse’s tail. Now, nanoengineers have added a new item to that list: a 3D printed biomimetic blood vessel network.

 

The new research, led by nanoengineering professor Shaochen Chen, addresses one of the biggest challenges in tissue engineering: creating lifelike tissues and organs with functioning vasculature — networks of blood vessels that can transport blood, nutrients, waste and other biological materials — and do so safely when implanted inside the body.

 

Researchers from other labs have used different 3D printing technologies to create artificial blood vessels. But existing technologies are slow, costly and mainly produce simple structures, such as a single blood vessel — a tube, basically. These blood vessels also are not capable of integrating with the body’s own vascular system.

 

“Almost all tissues and organs need blood vessels to survive and work properly. This is a big bottleneck in making organ transplants, which are in high demand but in short supply,” said Chen, who leads the Nanobiomaterials, Bioprinting, and Tissue Engineering Lab at UC San Diego. “3D bioprinting organs can help bridge this gap, and our lab has taken a big step toward that goal.”

 

Chen’s lab has 3D printed a vasculature network that can safely integrate with the body’s own network to circulate blood. These blood vessels branch out into many series of smaller vessels, similar to the blood vessel structures found in the body.

 

Chen’s team developed an innovative bioprinting technology, using their own homemade 3D printers, to rapidly produce intricate 3D microstructures that mimic the sophisticated designs and functions of biological tissues. Chen’s lab has used this technology in the past to create liver tissue and microscopic fish that can swim in the body to detect and remove toxins.