3D bioprinting of anisotropic engineered tissue constructs with ultrasonically induced cell patterning

As 3D bioprinting continues to evolve as a promising alternative to engineer complex human tissues in-vitro, there is a need to augment bioprinting processes to achieve the requisite cellular and extracellular organizational characteristics found in the original tissues. While the cell distribution within bioinks is typically homogeneous, incorporating appropriate cellular patterning within the bioprinted constructs is an essential first step towards the eventual formation of anisotropically organized tissue matrix essential to its biomechanical form and function. This study describes a new bioprinting technique that uses ultrasonic standing bulk acoustic waves (SBAW) to organize cells into controllable anisotropic patterns within viscous bioinks while maintaining high cell viability.

Read Article Here.

More News