While 3D bioprinting is widely used to construct complex biocompatible structures, researchers are now attempting to extend the technique into the fourth dimension. Here, 3D printed objects can be made to “self-transform” over time, which means that they can take on different forms or functions when exposed to physical stimuli such as osmotic pressure, heat, current UV light or other energy sources. For more information see the IDTechEx reports on tissue engineering and 3D bioprinting.

 

Researchers in the US have now shown that they can fabricate 4D hierarchical micropatterns by exploiting natural soybean oil as the bioink material. The work, which is published in Biofabrication, describes how the micropatterns can be used as biocompatible, shape-changing scaffolds for use in tissue engineering and regeneration applications (Biofabrication 10 035007).

 

“We used smart natural lipids, that is, soybean epoxidized acrylate (SOEA), as an ink material to fabricate biocompatible, topographical and 4D dynamic shape-changing tissue scaffolds,” says team leader Lijie Grace Zhang of The George Washington University in the US.