

Ref. No.: 0070060041.BLA Approved Date: 10/01/2018

Version: 1

GelMA-Alginate Kit Protocol

Kit Components

Item	Quantity	Storage
CELLINK GelMA Powder - Sterile	1000 mg	-20 °C, protected from light
CELLINK Alginate Powder - Sterile	200 mg	Room Temperature
Nozzle Kit	1	Room Temperature
Sterile 3 cc Cartridges	3	Room Temperature
Sterile luer-lock	3	Room Temperature
Sterile 12 mL syringe	3	Room Temperature

Materials not included

Item	Quantity
Stir Bar – Sterile	2
PBS	20 mL
50 mL Falcon Tube - Sterile	2
Sterile 0.22 µm filter	2
Irgacure 2959 or LAP	200 mg
Sterile Serological pipets	2

Protocol Summary

This kit and protocol are intended for the generation of GelMA-Alginate bioinks for 3D bioprinting. The kit contains two components, sterile GelMA powder and sterile Alginate powder. The instructions will direct the reconstitution of a GelMA solution and an Alginate solution that finally is mixed at 1:1 ratio to generate the bioink. The components will be reconstituted at twice the final concentration to be diluted upon mixing.

Examples of common Compositions and Recipes

GelMA-Alginate Bioink	GelMA wt% Needed	Alginate wt% Needed
5%-1.5%	10% GelMA	3%
7.5%-1.5%	15% GelMA	3%
10%-1.5%	20% GelMA	3%
5%-3%	10% GelMA	6%
7.5%-3%	15% GelMA	6%
10%-3%	20% GelMA	6%

CELLINK AB
Arvid Wallgrens Backe 20
SE 413 46 Gothenburg
Sweden
Phone +46 732 67 00 00

CELLINK LLC 75 Kneeland Street Cambridge, MA 02111 USA Phone +1 650 515 5566

Ref. No.: 0070060041.BLA Approved Date: 10/01/2018

Version: 1

Alginate Precursor Solution Reconstitution Protocol

This alginate precursor solution will be made at twice the desired final concentration.

- 1. Prepare 20 mL of PBS or your desired reconstitution buffer.
- 2. Sterile filter this buffer into a sterile 50 mL Falcon Tube.
- 3. Pipet the desired volume of the sterilized reconstitution solution to the vial of CELLINK Alginate powder to achieve the desired concentration.

Final Concentration Desired	Volume Reconstitution Solution Needed
1% (10 mg/mL)	20 mL
2% (20 mg/mL)	10 mL
3% (30 mg/mL)	6.66 mL
4% (40 mg/mL)	5 mL
5% (50 mg/mL)	4 mL

- 4. Add a sterile stir bar to the vial.
- 5. Stir solution overnight at room temperature to ensure dissolution.
- 6. Transfer alginate precursor solution to a syringe.

Ref. No.: 0070060041.BLA Approved Date: 10/01/2018

Version: 1

GelMA Precursor Solution Reconstitution Protocol

This GelMA precursor solution will be reconstituted with twice the desired final concentration for GelMA, since Alginate Precursor solution will be mixed in at a ration 1:1.

- 1. Remove CELLINK GelMA powder from storage and return to room temperature.
- 2. Prepare 25 mL of warmed PBS.
- 3. Mix in the desired amount of photoinitiator to achieve the necessary precursor solution concentration.

Final PI Concentration	PI mass for 25 ml of Buffer Stock
0.05% (0.5 mg/mL)	12.5 mg
0.10% (1 mg/mL)	25 mg
0.25% (2.5 mg/mL)	62.5 mg

- 4. Sterile filter the photoinitiator solution using the 12 mL syringe and 0.22 μ m sterile filter into a sterile falcon tube.
- 5. Heat the sterile photoinitiator solution to 60 °C.
- 6. Add the desired volume of heated photoinitiator solution to the vial of CELLINK GelMA powder to achieve the desired concentration.

Final Concentration Desired	Volume Reconstitution Solution Needed
5% (50 mg/mL)	20 mL
10% (100 mg/mL)	10 mL
15% (150 mg/mL)	6.66 mL
20% (200 mg/mL)	5 mL

- 7. Stir the mixture for 30 minutes at 70 °C to ensure dissolution.
- 8. Transfer GelMA precursor solution to a syringe and cover with foil to protect from light.

Mixing GelMA-Alginate

- 1. Warm up both the GelMA and Alginate precursor solutions to 37 °C
- 2. Transfer to the necessary volume of each solution from the stock syringe to a new syringe using a luer-lock connector.
- 3. Mix the two precursor solutions using a dual-syringe mixing technique a minimum of 25 times back and forth.
- 4. Transfer the whole volume to one syringe and cap.
- 5. Lightly centrifuge (500 rpm) to remove air bubbles.
- 6. Transfer into 3 cc cartridge for bioprinting.

CELLINK AB
Arvid Wallgrens Backe 20
SE 413 46 Gothenburg
Sweden
Phone +46 732 67 00 00

CELLINK LLC 75 Kneeland Street Cambridge, MA 02111 USA Phone +1 650 515 5566