Bioprinting of living human cells has gotten a boost with new work out of Sweden that’s generated cartilage tissue by printing stem cells using a 3D bioprinter.

 

A team of researchers at Sahlgrenska Academy has not only managed to print surviving stem cells, but their research also went one step further—they were able to influence the cells to multiply and differentiate to form what are called chondrocytes, or cartilage cells, in the printed structure, said Stina Simonsson, associate professor of cell biology at the academy.

 

“In nature, the differentiation of stem cells into cartilage is a simple process, but it’s much more complicated to accomplish in a test tube,” said Simonsson, who led the research. “We’re the first to succeed with it, and we did so without any animal testing whatsoever.

 

A team of biological-materials 3D printing experts at the Chalmers University of Technology and orthopedic researchers from Kungsbacka took part in the research project—the findings of which have been published in a paper in the magazine Nature’s Scientific Reports .

 

Researchers used cartilage cells taken from knee-surgery patients and then manipulated them in a laboratory, which caused them to rejuvenate and revert into what are called “pluripotent” stem cells—or cells that potentially can develop into many different types of cells.

They then expanded these stem cells, encapsulated them in a composition of nanofibrillated cellulose, and printed them into a structure using a 3D bioprinter. After being printed, researchers treated the stem cells with growth factors that caused them to differentiate correctly so that they formed cartilage tissue, according to the team.