Belgian researchers have evaluated the use of 3D bioprinting to create in vitro cancers cells that can properly represent the in vivo cell biology. With the view that the technology is difficult to access, the KU Leuven researchers stipulate as to whether the bioprinting process is valuable.

 

A team of scientists from the Indian Institute of Technology Hyderabad have published a study on the advances of 3D bioprinting in this field over the last five years.

 

The two papers both highlight the ability of 3D printing to reproduce cell microenvironments. This is particularly important in relation to cancer cells.

 

The advantage of 3D bioprinting

3D bioprinting enables scientists to produce cell structures that are three-dimensional, however there are a number of drawbacks such as the inability to produce spherical shapes. This is something NASA is combating by growing bioprinted cancer cells in space and eliminating the effects of gravity.

 

Is it worth the effort?

The Belgian researchers from KU Leuven explain the creation of 3D cell structures can be inaccessible due to high cost and relatively low availability.

Once the accessibility issue is overcome, the team state the technology has limitations in its reproducibility – this can be a general problem in 3D printing. The paper, published in the Journal of Cellular Physiology, explains, “In addition, different 3D cell culture techniques often produce spheroids of different size and shape, which can strongly influence drug efficacy and toxicity.”

 

Hopefully in the future, bioprinting will advance and eliminate the problems of reproducibility as this is an often cited issue with 3D printing technology on the whole. and it is expected to be addressed as the technology matures, particularly into industrial use.

 

The KU Leuven paper titled ‘Three-dimensional cell culture models for anticancer drug screening: worth the effort?’ was written by Eddy-Tim Verjans, Jordi Doijen, Walter Luyten, Bart Landuyt and Liliane Schoofs. Elsewhere at KU Leuven, 3D printing research has created hydrocyclonic microfilters and students have implemented FDM 3D printing to create an innovative drone design; the CargoCopter.