In April 2014, the Mata twins were born into an uncertain future. The sisters were connected from their chest to their pelvis with several shared organs, and it was deemed desirable to separate them. Faced with one the most complex separations ever for conjoined twins, their surgeons at Texas Children’s Hospital in Houston, US, embraced the help of an unexpected rookie: a 3D printer.

 

The girls first underwent a series of computerised tomography scans. This data was used to print out colour-coded 3D models of the girls’ organs and skeletons in exquisite detail. These models enabled the separation surgery to be planned and extensively practiced. At 10 months old, the girls were separated 18 hours into a 26-hour operation. ‘This is the first time a separation surgery for twins with this particular configuration has been successful,’ said one of their surgeons at the time. Along with the surgeons, 3D printing was hailed a hero.

 

And it isn’t just for conjoined twin separation that 3D printing has earned its stripes in the operating room in recent years. Other types of complex surgeries have now been practiced this way, including a full-face transplant, and spine, brain and heart surgery. 3D printing is also increasingly being used to produce low-cost, made-to-measure implants including jaws, pieces of skulls, and hips.