“Soft” 3-D Bioprinting: Solving the Hard Problem of Artificial Organs

Companies are spending on 3-D print solutions. As noted by Forbes, 90 percent of organizations believe 3-D printing offers a competitive advantage, with 47 percent seeing greater return on investment than last year and 72 percent expecting to spend more on the technology through 2018.


The challenge? Expanding print’s potential. While 3-D prototyping has launched a new industrial revolution, there’s now a trend toward 3-D bioprinting. A major benefit of 3-D bioprinting includes replacing organs or creating viable biological structures capable of encouraging tissue replication. This is no easy feat, but the recent development of “super soft” materials could help solve the hard problem of creating artificial organs.


Heart of the Matter


3-D printing is already used to empower human beings. For example, advancements in printing techniques and materials have created a market for custom-built artificial limbs designed to give Paralympic athletes mobility and utility much closer to typical body function than previous generations of prosthetics could, according to 3DPrint.com.


Inside the body, however, unique challenges emerge. If printed organs and tissues don’t match the composition of internal structures, implantation could result in rejection or outright failure. As noted by IDTechEx, lack of tissue vascularization can be a major issue as well. Without vasculature to transport nutrients and oxygen freely, tissues and organs suffer. While there are several methods of using 3-D bioprinting to create artificial vasculature, the complex design of vasculature can be difficult to replicate.

More News